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• Introduction – Relevance to CFC-free Air-
conditioning in Automobiles, Energy 
Conservation and Emissions Reduction 

• Advantages of Technology and Thin-film 
Cooling Examples

• Thin-film Power Conversion Examples

• Major Outstanding  Issues for Research

• Emerging Thin-film TE Technology 
Applications



Why Thermoelectrics?
• Converts electrical and thermal energy using a solid state 

device with minimal moving parts
• Chip-scale functionality with thin-film materials using 

standard microelectronic processing
• Computer Chip, Photonic Chip, Lab-on-a-Chip

• Green Technology – CFC-free refrigeration to waste-heat  
recovery for fuel efficiency



Thermoelectric Effect

Ref  : Nature, 413,  577 (2001)

• Cooling or Power 
Conversion Efficiency 
critically dependent on 
the material Figure of 
Merit (ZT)
• ZT = (α2σ/K)T
• Minimize thermal 
conductivity and 
maximize electrical 
conductivity



ZT and COP of Refrigerator or Air-Conditioner

Figure-of-Merit (ZT)

Coefficient of 
Performance

of Refrigerator

THOT = 300 K
∆T ~ 30 K
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Higher ZT – Incentives for New Approaches to 
Implementing Higher COP Concepts



• High-density, light-weight

• Higher efficiency

• Replace Batteries

Implications for Power 
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THERMOELECTRIC TECHNOLOGIES in 1992 
Fort Belvoir Workshop Organized by Dr. Stuart Horn
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With Advanced Semiconductor 

Materials Technology?
1960’s

Semiconductor Materials
Technology

• ZT - figure of merit - has been stagnant at about 0.8 to 1 for the 
last 40 years - cooling and power conversion efficiencies low -
useful only in applications where you really need it

• ZT need to improve over 1.5 at 300K for a major impact in 
electronics and around 2 to 2.5 for a revolutionary impact in air-
conditioning, and power from waste-heat

T=300K



Cs Bi4Te6 (Michigan State University)
Bulk Materials with a ZT~ 0.8 at 225K but less than 0.8 at 

300K (Science 287, 1024-1027, 2000)
Filled  Skuterrudites (JPL)

Bulk materials with a ZT ~1.35 at 900K (Proc. Of 15th

International Conf. On Thermoelectrics, 1996)
PbTe/PbTeSe Quantum-dots (MIT Lincoln Labs.)

ZT~2 at 550K and ZT~0.8 at 300K based on estimated 
thermal conductivity values (J. Electronic Materials, 29, L1 , 
2000)

Bi2Te3/Sb2Te3 Superlattices (RTI)
ZT~2.4 at 300K in devices with all properties measured at the 

same place, same time, with current flowing and verified by two 
independent techniques (Nature, 597-602, 2001)

Some of the Bulk Material and Thin-film 
Developments



Multiple
Applications

Multiple
Applications

Thermoelectrics 
Research 

Thermoelectrics 
Research Breakthrough 

Nanotechnology
Breakthrough 

Nanotechnology



RTI’s 40-Year Breakthrough
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10Å/50Å Bi2Te3/Sb2Te3
Structure

Optimized for 
disrupting heat 
transport while 
enhancing electron 
transport perpendicular 
to the superlattice 
interfaces

RTI’s Nano-structured Superlattice Material

 Applied Physics Letters, 75, 1104 (1999)



MOCVD Growth of Superlattices

Low-temperature technology and scaleable for large areas

In-situ ellipsometry for nanometer-scale control of deposition 
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RTI’s Superlattice Material
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The RTI breakthrough arises from reducing heat 
transmission without disrupting electron flow
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